
Topic 1:
Introduction
and Program
Design – Part 1

ICT167 Principles of

Computer Science

© Published by Murdoch University, Perth, Western Australia, 2020.

This publication is copyright. Except as permitted by the Copyright Act no part of it

may in any form or by any electronic, mechanical, photocopying, recording or any

other means be reproduced, stored in a retrieval system or be broadcast or

transmitted without the prior written permission of the publisher

3

§ Objectives
§ Understand the nature and role of programming

in modern computing

§ Understand the main steps involved in

programming

§ Explain the difference between high-level and

low-level languages and give examples

§ Describe the steps involved in executing a high-

level program
§ That is, compiling, linking and interpreting

§ Explain why Java is a popular language

Topic 1 – Part 1

4

§ Explain the role of the Java SDK, compiler,

interpreter, byte-codes, and the JVM in

developing Java software

§ Give correct Java syntax for very basic

programs

§ Describe the steps involved in running a Java

program

§ Produce simple standard output in Java

§ Be able to use the Scanner class of Java API

for simple standard input

§ Know how to recognize a simple infinite loop

and stop the running of a program

Topic 1 – Part 1

5

§ Be able to use the primitive data types of Java

§ Be able to write arithmetic and Boolean

expressions in Java

§ Be able to use the Java constructs for

sequence, selection and repetition

Reading:

Savitch Chapters 1, 2, 3 and 4

Recommended self test questions:

Chapters 1.3, 1.4, 2.1 and 2.2

Topic 1 – Part 1

6

§ Developing a piece of software or a system

involves many skills and usually many

people

§ These days software is often complex and it

is important to get it to work correctly and

for it to be easy to use and easy to maintain

§ Systems analysts, software

architect/designers and software engineers

all play a part in managing this complexity

Programming and Software

Development

7

§ Also, a lot of the hard work has been done

and it is out there to be used in the form of

friendly operating systems, high-level

languages, libraries of code and networks

which are already set up and easy to use

§ However, there is still a very important role

for people who can do the small fiddly bits:

the programmers

Programming and Software

Development

8

§ To become a good programmer you will

need to:
§ Have a commitment to getting the small details

right and

§ Know how all bits fit together. That is,
§Know how to write code that can be used in a

bigger system

§Know what the rest of a team wants from your
code

§Know the quickest and most reliable ways of

getting the job done

Programming and Software

Development

9

§ Programming is a creative activity

§ You will be given a description of a finished

product

§ For example: “it is round, green and tastes

like almond with the hint of an after-taste of

elderberry and it feeds n people”

§ You have to invent a recipe which is

guaranteed to work (for any n) and which

can be followed by a real moron with

absolutely no common sense

Programming and Software

Development

10

§ Using a computer for problem solving

involves four steps:
1. Establish the requirements: specifying the

problem in terms of
§ The input data to be supplied
§ The tasks to be performed and

§ The output results to be produced

2. Create a design: devising an algorithm, or

sequence of steps, by which the computer can

produce the required output from available

input

Writing a Program

11

3. Implement the code: expressing the

algorithm as a computer program in a

programming language such as Java

4. Test the implementation: debugging and

testing the program to eliminate errors so

that the program produces the intended output

every time it is executed
§ You can only prove the presence of bugs, not

their absence – computing proverb

§ The process of documentation runs as a

thread through all four steps above

Writing a Program

12

§ Programs may be written in a variety of

languages. For example: Fortran, COBOL, Pascal,

Smalltalk, Ada, LISP, PROLOG, Visual Basic,

Delphi, C, C++, Java, C#, Python, Ruby

§ High-level languages (vaguely) resemble human

languages but have strict syntax rules

§ The above is a list of popular high-level

languages

§ Computers only understand machine code (0’s

and 1’s). Assembly languages use mnemonics to

make it less difficult to write machine code

High/Low Level Languages

13

§ Assembly languages are called low-level

languages

§ Nearly all programmers can work with high-

level languages to be most productive

§ There are some specialized jobs which

require assembly language programming

skills: like developing new computers and

languages, robots, embedded systems, or

where speed is essential (eg: in games)

High/Low Level Languages

14

§ Most programmers don’t need to be experts

in the use of assembly language (although

some understanding of assembly language

is desirable in order to fully understand the

low level functions)

High/Low Level Languages

15

§ Programs written in high-level languages

are almost always just put in text files
§ Any text editor (notepad, vi, pfe, gvim, JBuilder,

Eclipse, NetBeans) will let you type the

program in

§ The text version is known as the source

code or source program

§ A program must be translated into machine

code before it can be executed on a

particular type of computer (CPU)

§ This can be accomplished in several ways

Executing High-level Source

Code

16

§ A compiler is a software tool which

translates a source program into a specific

target (low-level) language the computer

can run
§ At this stage, the program is not yet running

§ Various errors may show up in this step

§ There is also (usually) a linking step, in

which other pieces of code (usually

compiled) are found from elsewhere (in the

current or another directory) and put

together with the current program to

produce the target program

Executing High-level Source

Code

17

§ Often the target program produced is in the

machine language of a particular computer

(CPU), which is then run to produce results

§ The Java approach is somewhat different

from the above approach

Executing High-level Source

Code

18

§ The Java compiler translates Java source

code into a special representation called

byte-code

§ Java byte-code is not the machine language

of any computer - it is platform independent
§ As in the previous approach, a linking step

(class loader) is involved, in which other pieces

of code (usually compiled) are fetched from

elsewhere (in current or the another directory or

even across a network from another machine)

and put together with the current program to

make code which can be run immediately

Java Translation and

Execution

19

§ An interpreter (another program) translates

each byte-code instruction into machine

language and executes it

§ This interpreter is called Java Virtual

Machine (JVM) – a part of the JDK and the

foundation of the Java platform

§ If the same JVM is available on many

platforms, applications that it executes can

be used on all those platforms

Java Translation and

Execution

20

§ Thus the Java compiler is not tied to any

particular computer

§ Java is considered to be architecture

neutral

Java Translation and

Execution

21

§ Java is a popular choice for implementing

Internet-based applications and software for

devices that communicate over a network

§ It is an object-oriented (OO) language so,

in designing and implementing Java

software, we will be using objects and

modelling with concepts such as classes
§ OOP is today’s key programming methodology

Why Learn Java?

22

§ There will be benefits for re-use of software

and clean design of larger applications

§ We will learn the basics of OOP in this unit

but there will be much more (such as

inheritance, polymorphism and dynamic

binding) to leave for later

§ The basics of OOP also apply to the

another popular C++ language

Why Learn Java?

23

§ Java was developed from a language which

could be used on many different machines

(like toasters, VCRs, televisions and smart

phones) and is architecturally neutral
§ A program can run in a standard way on a

variety of different types of machines and

under a variety of operating systems

Why Learn Java?

24

§ As well as being architecturally neutral,

Java has lots of other facilities to allow ease

of use with Internet-based applications
§ These include applets, classes for URLs and

networking, servlets, JSPs, JSFs and very

convenient GUI (graphical user interface) tools

§ We will not study these applications in any

depth in this unit but all such applications

need basic knowledge of Java

programming

Why Learn Java?

25

§ The standard JDK compiler is called “javac”
§ Use it to compile a text file containing java

source code

§ The result is a file (with a .class extension)

called the Java byte-code and is analogous

to executable code

§ To execute the byte-code file, you need an

interpreter
§ Which one to use depends on the environment

and the operating system

Compiling, Interpreting and

JVM

26

§ For command line running of ordinary

programs (called ‘application programs’), we

can use the interpreter “java” (appropriate

versions of this are supplied for Windows,

Linux, Mac OS and Solaris)

Compiling, Interpreting and

JVM

27

§ IDEs use “java” or their own versions

§ Most modern browsers can run compiled

applets

§ The compiled Java program, in byte-code,

should run in (almost) exactly the same way

under different operating systems (Java is

architecture neutral)

§ We say that the byte-code is being run on a

Java Virtual Machine (JVM) and that

various interpreters are implementations of

the JVM

Compiling, Interpreting and

JVM

28

§ So, Java source code can be compiled on

any machine (with JDK), the compiled code

can be sent to any other machine (eg: over

the Internet) and that program will run as

planned provided the second machine has

an implementation of the JVM (for

example, in a browser

§ This makes Java suitable for Internet

applications

Compiling, Interpreting and

JVM

29

§ The syntax of both languages is very

similar but with a number of minor (but

important) differences
§ The selection (if, if-else, switch-

case) and iteration (for, while, do-

while) constructs you have used in C are

virtually identical in Java except that Java has
a boolean data type (and keywords

false/true for use in boolean expressions)

Differences Between Java

and C

30

§ C is a compiled language meaning a C program

compiled for one computer system will not run on

a system with a different type of CPU and

different type of operating system

§ Java runs on the JVM and is architecture

neutral

§ C (like most programming languages) uses the

ASCII character set whereas Java uses the

Unicode character set

§ The Unicode character set includes the ASCII

character set and characters from many

different alphabets (but you probably won't use

them)

Differences Between Java

and C

31

§ The I/O is different:
§ C uses functions like scanf() and printf()

for input and output respectively

§ Java uses methods of library classes like
Scanner and System.out for input and

output respectively

§ Parameter passing is different:
§ In C, programmer specifies whether they want

to pass a parameter by value or by reference

§ In Java, the language decides automatically
§Any primitive data types are automatically passed by
value
§Any complex data types (objects) are passed by

reference

Differences Between Java

and C

32

§ Java is an object-oriented language where

as C is a procedural language
§ This is the biggest difference between the

two languages

§ OOP is a very powerful way of developing

software and focuses on abstraction,

information hiding, composition and

inheritance among other things (more of

this later)

Differences Between Java

and C

33

// HelloClass.java

public class HelloClass

{

public static void main(String[] args)

{

System.out.println("Hello Class");

} // end main

} // HelloClass

An Example Java Program

34

§ Note:
§ There is a class containing a main method

§ You might not know what “public ...” means in

two of the lines, but you must put them in

§ The name of the file must be exactly the

same as the name of the class, with an
extension “.java”

§Java is case sensitive, so be careful when
naming the class and the file

An Example Java Program

35

§ Compiling on command line:

javac HelloClass.java

§ Executing on command line:

java HelloClass

§ This program should result in the following

output on the command line:

Hello Class

§ There will be an information sheet on using

Java and NetBeans IDE in the labs

An Example Java Program

36

§ Many operating systems allow programs to

mention a standard source of input (called

standard input) and a standard place for

output to go (called standard output)

§ By default, keyboard activity goes into the

standard input and standard output goes to

(a window on) the screen (unless you

redirect it elsewhere)

Standard IO in Java

37

§ It is easy to command the operating system

to get standard input for a program from

somewhere else (like a file) or to send

standard output somewhere else

§ Input/Output (IO) is quite a complicated

business (with ends of lines and invisible

characters, etc.) but programming

languages usually provide simple facilities

for standard IO

Standard IO in Java

38

§ To send a line to the standard output, Java

allows you to just write:

System.out.println(“a line”);

§ System.out is an object for sending output to

the screen

§ println() is a method to print whatever is in

parentheses

§ If you do not want to finish with a new line,

use:

System.out.print(“a line”);

Standard IO in Java

39

§ The string of characters contained between

the double quotation marks is called a

character string or a string literal

§ White-space characters in strings are not

ignored by the compiler

§ Strings cannot span multiple lines of code

Standard IO in Java

40

§ Standard input will come into a program

from the keyboard (unless you redirect it)

§ Java is unusually inconvenient when it

comes to standard input

§ This is because Java has strict rules for

error handling

§ Inputs can cause errors (like a letter arriving

when a number is expected) and so these

errors should be handled

Standard Input

41

§ Java expects to be told what to do if an input

error arises
§ The programmer should tell the program what to

do

§ Anyway, these days, most serious programs

use GUIs for IO (and this is quite easy in

Java)

§ Later in the unit you will see how to handle

standard input yourself and how to set up

simple GUI input

Standard Input

42

§ The Scanner class (in java.util

package) is available as part of the standard

Java library

§ It provides convenient methods for reading

input values of various types

§ The input values can come from various

sources including standard input (keyboard)

or a file

The Scanner Class

43

§ When reading data from the keyboard, we are

reading from the standard input stream, which
is represented by the System.in object in a

Java program

§ To create a Scanner class variable (object),

use

Scanner input = new Scanner(System.in);

§ Here identifier input is the programmer

defined variable name and Scanner is the type

of this variable

§We say input is a Scanner object

The Scanner Class

44

§After the above Java statement, methods of
Scanner class (such as nextInt(),

nextDouble(), next(), and

nextLine()) can be used with the object

input to read data (of a particular type) from

the keyboard

The Scanner Class

45

§ Note that in order to make the Scanner class

available to your program, the following line

must be inserted in the beginning of the

program:

import java.util.Scanner;

or

import java.util.*;

The Scanner Class

46

// File name: SmallIO.java

import java.util.Scanner;

public class SmallIO{

public static void main(String[] args){

Scanner keyboard = new Scanner(System.in);

String a = ""; // initialise to empty string

while (true){

//an infinite loop, use Ctrl-C to quit

System.out.println("Enter a line:");

a = keyboard.nextLine();

System.out.println("Your line: " + a);

System.out.println(); // print a blank line

} //end of while

} //end of main

} //end of class

An Example

47

§ It is NOT a good design to trap a user in an

infinite loop but as a user (and debugger) of

your own programs, remember to use Ctrl-C

(i.e. press the Ctrl and C keys together) to

quit such a program when in command

prompt mode

§ If running from NetBeans IDE, use:

Run | Stop Build/Run

The Scanner Class

48

§ Scanner_object_name.nextInt()

§ Returns next int value

§ Scanner_object_name.nextFloat()

§ Scanner_object_name.nextLong()

§ Scanner_object_name.nextDouble()

Some Scanner Class

Methods

49

§ Scanner_object_name.next()

§ Returns next keyboard characters up to, but not

including, the first delimiter character

§ Unless specified otherwise, white spaces, tabs

and newlines are used to separate the elements

of input from each other - these characters are

called default delimiters

§ Scanner_object_name.nextLine()

§ Returns the rest of the input line as a string

§ The end-of-line character ‘\n’ is read and

discarded, it is not included in the string returned

Some Scanner Class

Methods

50

§ In addition to the System.out.print() and

System.out.println() methods for

standard output, Java 5.0 introduced a
System.out.printf() method similar to C’s

printf() function

§ Eg: (what will the following print on the screen?)

System.out.printf("%n%s%n%s%n",

"Welcome to ICT167 !",

"The Unit Coordinator is Kevin

Wong");

Standard Output: printf

51

§ Java Program Structure:

§ A Java program is made up of one or more

classes; each class is normally in a separate file

§ A class contains one or more methods which

perform tasks in the program

§The item(s) inside parentheses are called

argument(s) and provide the information needed by

methods

§ A method contains program statements that

perform the method’s tasks

§Each statement ends with a semicolon

§ A Java application always executes the main

method

Primitive Java

52

§ The Java Application Programming Interface

(API) is a collection of classes (class

libraries) that can be used as needed to

support program development

§ The classes in a class hierarchy are often

related by inheritance

§ The classes in the Java API are separated

into packages which can be nested

Java API

53

§ The System class, for example, is in package
java.lang

§ Each package contains a set of classes that

relate in some way

§ For example, the print and println

methods are part of the Java API; they are

not part of the Java language itself

Java API

54

§ Using a class from the Java API can be

accomplished by using its fully qualified
name: java.lang.System.out.println();

§ Or, the package can be imported using an

import statement, which has two forms:

import javax.swing.*;

import java.util.Random;

§ The java.lang package is automatically

imported into every Java program

Java API

55

§ Used to document programs and improve

their readability

// indicates that the line is a

comment

§ A comment that begins with ‘//’ is an end-

of-line comment - it terminates at the end of

the line on which it appears

§ Traditional comment, can be spread over

several lines as in
/* This is a traditional comment.

It can be split over multiple lines

*/

Comments

56

§ Blank lines, spaces and tabs are known as

whitespace and make programs easier to

read

§ Compiler ignores comments, blank lines and

whitespaces

Comments

57

§ Every Java program consists of at least one

class that you define

§ class keyword introduces a class

declaration and is immediately followed by

the class name

§ Keywords are reserved for use by Java and

are always spelled with all lowercase letters

§ By convention, class names begin with a

capital letter and capitalize the first letter of

each word they include (e.g., HelloClass)

Class Declaration

58

§ Java is case sensitive - uppercase and

lowercase letters are distinct - so n1 and N1

are different (but both valid) identifiers

§ A left brace ‘{‘ begins the body of every class

declaration and a corresponding right brace

‘}’ must end each class declaration

§ The code between braces should be

indented

Class Declaration

59

public static void main(String[]

args)

§The main method is the starting point of every

Java application and must be defined as

shown, otherwise the JVM will not run the

application

§Java class declarations normally contain one

or more methods

§Methods perform tasks and can return

information when they complete their tasks

The main Method Declaration

60

§ The keyword void indicates that this

method will not return any information

§ The body of a method must be enclosed in

left and right braces

The main Method Declaration

61

§ A data type is defined by a set of values and

the operators that you can perform on them

§ Each value stored in memory is associated

with a particular data type

§ The Java language has several predefined

primitive types

§ The following reserved words represent

seven different primitive data types:

§ byte, short, int, float, double,

boolean, char

Primitive Data Types

62

Primitive Data Types
Type

Name

Default

value

Memory

used

Default

value

Range of values

byte integer 1 byte 0 -128 to 127

short integer 2 bytes 0 -32,768 to 32,767

int integer 4 bytes 0 -2.147,483,648 to

2.147,483,648

long integer 8 bytes 0 -263 to (263 –1)

float Floating-

point

4 bytes 0.0 +-3.40282347 X 10+38 to

+-1.40282347 X 10-45

double Floating-

point

8 bytes 0.0 +-1.79769313486231570 X

10+308 to

+-4.94065645841246544 X

10-324

char Single char

(Unicode)

2 bytes ‘\0’ Each values from 0 to 65535

represents a character in

the Unicode character set

boolean 1 bit false true or false

63

§ Each variable in a Java program has to be

declared to be of a particular type

§ This is so that the compiler (and the reader

of code) can know what kind of values a

variable can have. The compiler can allocate

storage and check for stupid errors

§ The variable may be of a primitive type like

int, boolean, double, char etc. The variable

can hold one of these simple values directly

Variables

64

§ Declare via:

int count;

double sum, average;

§ Declare and initialize via:

boolean flag= true;

§ All other variables in Java are of a Class

type

Variables

65

§ Class types begin with an uppercase letter

(e.g. String)

§ Primitive types begin with a lowercase letter

(e.g. int)

§ Variables of both class and primitive types

begin with a lowercase letter (eg:

studentName, studentNumber)

§ Multi-word names are "punctuated" using

uppercase letters

Naming Conventions

66

§ Java provides a mechanism to define a

variable, initialise it, and fix the value so it

cannot be changed

§ Eg:

public static final double PI =

3.14159;

public static final int MAX_COUNT =

100;

Named Constants

67

§ An assignment statement takes the form:

variable = expression;

§ The expression is evaluated and the result

is stored in the variable, overwriting the

value currently stored

§ The expression can be a single value or a

more complicated calculation involving

operators and operands

Assignment Statements

68

§ Java is a strongly typed language

§ That is, you can not assign a floating point value

to a variable declared to store an integer

§ Sometimes conversions between numbers

are possible

§ Eg: you can assign a value of an integer type to

a variable of a floating-point type

double interestRate = 7;

Note the value of interestRate is 7.0

Assignment Capabilities

69

§ A value of one type can be assigned to a

variable of any type further to the right

below:

byte -> short -> int -> long ->

double

but not to a variable of any type further to

the left. For example:

int todays_rate;

todays_rate = interestRate;

is illegal because interestRate is of type

double

Assignment Capabilities

70

§ A type cast can be used to change the data

type of a value from its declared type to

some other type

§ Eg: the above example can be written as:

todays_rate = (int)interestRate;

which is now legal

§ Any nonzero value to the right of the decimal

point is truncated rather than rounded

Type Casting

71

§ Arithmetic expressions can be formed using

the +, -, *, and / operators together with

variables or numbers referred to as

operands

§ When both operands are of the same type, the

result is of that type

§ When one of the operands is a floating-point

type and the other is an integer, the result is a

floating point type

Java Arithmetic Operators

72

§ The division operator (/) behaves as

expected if one of the operands is a floating-

point type

§ When both operands are integer types, the result

is truncated, not rounded, eg: 60/100 gives a

zero value

§ The modulus (mod) operator (%) is used

with operators of integer type to obtain the

remainder after integer division (example

next slide)

Java Arithmetic Operators

73

§ Eg: 18 % 4 gives 2

That is, 18 / 4 = 4, with 2 left over

§ The mod operator has many uses, including

determining

§if an integer is odd or even

§Eg: if ((num % 2) == 1) // true if odd

§if one integer is evenly divisible by another integer

§Eg: if ((num1 % num2) == 0) // true if even

Java Arithmetic Operators

74

§ Parentheses can communicate the order in

which arithmetic operations are performed

eg (itemPrice – discount) *

numberOfItems

§ Without parentheses, an expressions is

evaluated according to the rules of

precedence

Parentheses and Precedence

75

§ When binary operators have equal

precedence, the operator on the left acts

before the operator(s) on the right

Parentheses and Precedence

Precedence level Operators

1st Highest

precedence

Unary operators +, -, !, ++, and

--

2nd Highest

precedence

Binary arithmetic operators *, /,

and %

Lowest precedence Binary arithmetic operators +

and -

76

§ Assignment operators can be combined with

arithmetic operators (+, -, *, /, and %)

§ Eg:

sum = sum + number;

can be written as

sum += number;

giving the same result

Specialized Assignment

Operators

77

§ Used to increase (or decrease) the value of

a variable by 1

§ The increment operator count++ or ++count

§ The decrement operator count-- or –count

§ Easy to use – however it is important to

recognize the difference:

§ Eg:

int m = 5; int n = 7;

int result= m *(n++); // post increment

of n

Increment / Decrement

Operators

78

§ What are the values of m, n and result after

execution of the above code?

int m = 5; int n = 7;

int result= m *(++n);// pre increment of

n

§ Now what are the values of m, n and result?

Increment / Decrement

Operators

79

§ The comparison operators:

§ equivalent to (==)

§ not equivalent to (!=)

§ greater than (>)

§ greater than or equal to (>=)

§ less than (<)

§ less than or equal to (<=)

are available for use in boolean expressions

Java Comparison Operators

80

§ An if statement has the form:

if(expression)

statement;

§ The expression is a boolean expression

which must evaluate to a true or false result

§ If the expression is true, the statement is

executed. Otherwise the statement is

skipped

Java Selection Statements

81

§ An if-else statement has the form:

if(expression)

statement1;

else

statement2;

§ If the expression is true, statement1 is

executed

§ If the expression is false, statement2 is

executed

Java Selection Statements

82

§ Several statements can be grouped together

into a block statement by enclosing them in

braces '{' and '}'

§ The body of an 'if' statement or 'else' clause

can be another if statement - called nested

if statements

Java Selection Statements

83

§ A switch statement has the general form:

switch(expression)

{

case value1:

statement-list1;

break;

case value2:

statement-list2;

break;

.

.

Java Selection Statements

84

.

.

case valuen:

statement-listn;

break;

default: // code to handle other

cases

break;

} // end switch

Java Selection Statements

85

§ The expression must evaluate to an

integral value such as an integer or

character

§ Java 8 (jdk 1.8) will allow strings in

expressions

Java Selection Statements

86

§ A while statement has the form:

while(boolean-expression){

statement(s); // loop body

}

§ If the boolean-expression is true, the

statement (called body of the loop) is

executed and then this expression is

evaluated again

Java Repetition Statements

87

§ The above step is repeated until the
expression becomes false

§ If the expression is false initially, the

statement is never executed

Java Repetition Statements

88

§ A for statement has the form:

for(initialisation;test-expression;update-

expression){

statements; // loop body

}

§ Like a while loop, the test-expression of a

for loop is tested prior to executing the loop

body

§ Like a while loop, a for loop executes zero

or more times

Java Repetition Statements

89

§ The initialisation is performed only once, but
the update-expression is executed after

each iteration

§ Note that each expression in a for

statement is optional:

§ If initialisation is left out, none is

performed

§ If the test-expression is left out, it is always

considered to be true - results in infinite loop!!

§ If the update-expression is left out, no

update is performed

Java Repetition Statements

90

§ A do-while statement has the form:

do{

statement(s); // loop body

} while(boolean-expression);

§ The loop body is executed at least once

§ The above process is repeated until the
boolean-expression becomes false

Java Repetition Statements

91

§ Note that selection and repetition

statements can contain any sort of
statements within them including other if,

switch-case and looping (while, for,

do-while) statements

Nested Statements

92

§ Boolean expressions can be combined

using the java "and" (&&) operator and “or”

(||) operator

§ Eg:

if ((score >= 0) && (score <= 100))

System.out.println(score);

if ((n1 < 0) || (n2 <= 0))

System.out.println(“Error – invalid data”);

§ Note: the following is not allowed:
if (0 < score <= 100) ….

Java Logical Operators

93

§ A boolean expression can be negated using

the "not" (!) operator

§ Eg:
boolean isValid = (score >= 0) && (score <=

100);

if (! isValid)

System.out.println(“Invalid score”);

Java Logical Operators

94

§ The following code:
if (n1 > n2)

max = n1;

else

max = n2;

§ can be written as

max = (n1 > n2) ? n1 : n2;

§ The conditional operator is useful with print

and println statements

System.out.print("You worked " +

((hours > 1) ? "hours" :

"hour"));

The Conditional Operator

95

// output numbers 0 to 9 : uses while loop

int count;

count = 0; //

initialisation

while(count < 10) // test

{

System.out.println(count);

count = count + 1; //

incrementation

} // end while

Examples:

96

// output numbers 0 to 9 : uses for loop

for(int i = 0;i < 10; i++)

{

System.out.println(i);

} // end for

Examples:

97

// output numbers 0 to 9 : uses do-while loop

int count;

count = 0; //

initialisation

do {

System.out.println(count);

count = count + 1; //

incrementation

} while(count < 10); // test

Examples:

98

// File: ScannerDemo.java
import java.util.*; // for Scanner class

public class ScannerDemo

{

public static void main(String[] args)

{

Scanner keyboard = new Scanner(System.in);

System.out.print("Enter two whole numbers ");

System.out.println("separated by one or more

spaces:");

int n1, n2;

n1 = keyboard.nextInt();

n2 = keyboard.nextInt();

System.out.println("You entered "+n1+" and "+n2);

Another Example:

99

System.out.println("Next enter two numbers.");

System.out.println("A decimal point is OK.");

double d1, d2;

d1 = keyboard.nextDouble();

d2 = keyboard.nextDouble();

System.out.println("You entered "+d1+" and "+d2);

System.out.println("Next enter two words:");

String s1, s2;

s1 = keyboard.next();

s2 = keyboard.next();

System.out.println("You entered \""+s1+"\" and \""

+s2+"\"");

s1 = keyboard.nextLine(); // To get rid of

// newline char '\n' – this is important !!!!!

Another Example:

100

System.out.println("Next enter a line of text:");

s1 = keyboard.nextLine();

System.out.println("You entered: \"" + s1 + "\"");

} // end main

} // end class

Another Example:

End of Topic 1 – Part 1

